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Abstract.In this paper we show how to constructall analytic solutionsof the
vacuumEinstein equationshavinga compactCauchyhorizondiffeomorphicto S

3
and ruled by closednull generatorswhichfiber the horizon in thesenseof Hopf
The setof (inequivalent)solutionsis infinite dimensional,containsthe two para-
meterTaub-NUTfamily as a specialcase,and maybe uniquelyparameterizedby
a pair of arbitrary, real analyticfunctionson ~2 (moduloan action of theconfor-
mal group of S2). Thehorizonof eachsuchsolution is necessarilya Killing horizon
(as provenrecentlyby Isenbergand theauthor) and is shownherealwaysto bea
tcrushing, horizon in the senseof Eardley and Sman’. Somerecentresults of
Gerhardt are usedto show that a neighborhoodof the horizon (in the globally
hyperbolic region) is alwaysfoliated by constantmean curvaturehypersurfaces.

The possible isometrygroups of the solutions consideredare characterizedin
termsof isometriesof the determining~‘Cauchydata, which is specifiedon the
horizonsthemselves.

1. iNTRODUCTION

The two-parameter,Taub-NUT family of vacuum spactimeshas provided

importantexamplesof the possiblepathologicalbehaviorof solutionsof Einstem’s

equations.In Misner’s words [1] they give <<a counterexampleto almostany-
thing>> one might naively haveconjecturedaboutEinsteinspacetimes.Thenow
familiar pathologiesexhibitedby the Taub-NUTsolutionsinclude:

a) the existenceof smooth,compactCaucy horizons lying betweenthe gb-
bally hyperbolicTaub regions and the causality violating NUT (Newman-Unti-
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-Tamburino)regions,

b) the occurrenceof closed timelike curves throughevery event of the NUT
regions,

c) the existenceof incompletegeodesicsin maximally extendedspacetimes

whichhaveno curvaturesingularities,and
d) the possibility of making inequi’,ralent NUT-like extensionsof Taub space

which however,cannot simulataneouslybe accommodatedwithin a Hausdorff

manifold.

The causality violating feature is particularly disturbing since it suggestsa
breakdown of the cosmic censorshipidea. On the other hand,the Taub-Nut
solutionsare very special.They eachhave anSU(2) x U( 1) groupof isometries

which acts transitively on a preferred family of hypersurfacesdiffeomorphic
to the threesphere.Thesehypersurfacesare spacelikein the Taubregions,time-

like in the NUT regionsandnull where they coincidewith the Cauchyhorizons.

It is natural to ask whetherone can constructlarger families of vacuumspace-
times with the samequantitativeTaub-NUTbehaviorby relaxingthe symmetry

restrictionsupon the metric. The purposeof this paper is to show that indeed
one can relax the SU(2) factor in the symmetry group and constructa large
family of Taub- NUT - like vacuum spacetimeswhich each have only a U( 1)

isometrygroup. The family we constructis infinite dimensionalandhas(roughly
speaking)half the dimension of the full spaceof U(1)-symmetric,vacuumsolu-
tions.

The SU(2) factor in the Taub-NUTsymmetrygroup is the commonisometry
group of all Bianchi IX (<<Mixmaster>>) cosmologicalmodels.The U(l) factor
howeverplays a more importantrole with regard to the extendibility of Taub

space through a Cauchy horizon. The Killing field generatingthis U( 1) group
action turns null on the Cauchyhorizon and becomestangentto the horizon’s
null generators.This is no accident.In a recentpaperMoncrief and Isenberg[2]

provedthat any analytic(electro-) vacuumspacetimewhich containsa comapct
null surfaceruled (in the senseof an S’ bundle)by closednull generators,neces-
sarily has a one-dimensionalisometry group with a Killing field tangentto the

null generatorsof the surface. Whetherone can relax the closurecondition on
the null generatorsand find analytic solutionswith no continuoussymmetries

is an open question. Moncrief and Isenbergconjecturedthat such solutions
do notexist.

In this paperwe shall consideranalytic,vacuumspacetimeswhicheachcontain
a compactnull surface diffeomorphic to S3. We shall impose the topological
constraintthat the generatorsof eachsuchnull surfaceare closedcurves which

fiber that surfacein the senseof Hopf(yielding a non-trivial S’ bundle:S3 -+ S2).

The results of Moncrief and Isenberg[2] show that eachsuchspacetimenecessa-
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rily hasa U( 1) isometrygroupwhoseaction preservesthe null generatorsof the

compactnull hypersurface.Imposing the implied symmetry upon the metrics
consideredwe prove a local existencetheoremfor solutionsof Einstein’sequa-

tions of the geometricaltype considered.We prove, usinga slight extensionof
the Cauchy-Kowalewskitheorem, that any analytic triple ~ ~ defmed
over 52 (where-y is a function,~ is a Riemannianmetric and is a one-form)
determinesan analytic, vacuum spacetimewhich contains a compactCauchy
horizohdiffeomorphicto S3.

Many of the solutionsso constructedare diffeomorphic to one anotherbut
one can parametrizethe inequivalent solutionsin an elegantway. By considering

the action of horizon preservingdiffeomorphisms which commute with the

U(l) symmetry action one can transform the initial data sets{‘y,g~j,, 1~a}to a
canonical<<gauge>>.One can first transform~ (conformally anddiffeomorphi-
cally) to coincidewith the standard(constantcurvature) metriconS2.Without

disturbing this condition one can transform~3aso that its divergencerelativeto

is zero. Finally, without disturbing thesecondizionsone can quotient out
an action of the conformalgroupof S2 on the spaceof pairs {(-y, !3a) ~g13 = o}.
The orbits of this group actionuniquely parameterizethe inequivalent,extendi-

ble, analytic vacuum spacetimeswhich we shall call generalizedTaub-NUT

spacetimes.

The techniquesfor deriving theseresults were developedpreviously in Ref.

[3] for the special case of a null surfacediffeomorphic to T3 (regardedas a
product S1 bundle: T3 -+ T2). The results of that paperextendimmediatelyto
encompassany other trivial, compactS’ bundle. One need only modify the

defmitions in an obvious way and repeat the argumentsof Ref. [3] essentially
word for word. The main contribution of the presentpaper is to show, in a

special case,how such argumentscan be extendedto handle compact,non-

-trivial S’ bundles.The techniquesemployedcould certainly be applied to treat
arbitrary such bundlesbut, to makethe constructionas explicit as possible,we
have restrictedour attention to the Hopf bundle(53~ S2). The analysisis then
facilitated by writing out the various geometricalobjectsof interest in terms

of the usualinvariantbasisvectorfields andone-formsdefinedoverS3.

There is a furthergeneralizationof the aforementionedresultswhich onecould
carry out. Isenbergand the authorhaverecentlyfound [4] that theorbit-closure
condition is sufficient to provetheir result on the existenceof a U( 1) isometry

group. One can relax the local product requirementupon the structureof the
null generatorsand look for compactnull surfacesruled in the senseof Seifert

manifolds [5] (which include ~1 bundlesas specialcases).Suchanalytic(electro-)
vacuum spacetimesmust also admit U(1) isometry groups which preservethe
null generators.The pictureto keep in mind is that thesemanifoldsmay contain
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exceptionalorbits about which the nearbyorbits twist in barberpole fashion -

closing but not yielding the local product structureof an S’ bundle.Examples

of such spacetimesare provided by the Kerr-Taub-NUT metrics [6] for suit-
ably commensuratevaluesof the adjustableparametersof this family (a restric-
tion neededto ensurethe closure of the null orbits). It seemsclear that one
could extendthe argumentsof the presentpapernot only to othernon-trivial

S~bundles but also to Seifert manifolds and thereby prove the existenceof
infinite dimensionalfamilies of still more exotic vacuumspacetimescontaining

Seifert-Manifold Cauchy horizons.The key idea in such an extensionis that
one can pass to a suitablecoveringspacewhich is an S1 bundle,carry out con-
struction argumentsanalogousto thosegiven here and then consistentlyproject

the resultingvacuummetrics backto theoriginal manifold.This line of argument
seemsto work in the context of the Moncrief-Isenbergproofof existenceof a
U(1) symmetry and we believe it shouldwork for the constructionof solutions

also.
An interesting application of such a constructionmight be to show that not

every analyticvacuumspacetimewith a null surfacediffeomorphicto S3extends

to contain a secondnull surfacediffeomorphicto ~ The Kerr-Taub-NUTsolu-

tions do extend to containsuch surfacesbut, except for the specialcaseof the
Taub-NUT solutions, these spacetimeshave distinct Killing fields generating
their two Cauchyhorizons (i.e., there are two commuting U(l) actionswhich

eachpreservethe generatorsof only onethe two horizons).The aboveremarks
suggestthat one could perturbthe Kerr-Taub-NUT solutionsslightly in sucha
way as to preserveone of the two U( 1) actionsandits associtadCauchyhorizon

while destroyingthe symmetryneededfor the existenceof the secondhorizon.
While we shall not attempt to carry out such a programherewe shall study

(within the context of the Hopf bundle structure) the necessaryand sufficient
conditions upon the null surface initial data for the existence of additional
non-trivial, isometries.We show that any suchadditional isometry mustpreserve

the horizon and commutewith the U(1) action impliedby the Moncrief-Isenberg
theorem. We shall also show how to characterizesuch additional symmetries

in termsof thenull surfaceinitial data{‘y, gd,, ~a} describedabove.

2. CONSTRUCTION OF (GENERALIZED) TAUB-NUT SPACETIMES

A. Analytic Lorentz Metrics Over S3 x R

We wish to consideranalyticLorentzianmetricsoverS3xR with the property
that the resulting spacetimesare foliated by spacelikehypersurfacesdiffeomor-

phic to S3. We shallthen considerthe possibility of analytically extendingsuch
metricsthroughcompactnull surfacesdiffeomorphicto
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Let ~i} = {~,1 ~ ~ be the standardbasis for invariant one-formsdefmed

over S
3. In terms of Euler angle coordinates{x’} = {O, ~, ,li} E {[O, 7r), [0, 27r),

[0, 4ir)} thesebasisone-formsmay bewritten

(2,1=cos~1idO+sin~isinOd~

~ ,li dO + cos ~i sinO d~

(2.1) C.3=di,1i+cosOdØ.

They provide a global analytic basis for one-forms over the three-sphereand
satisfy theidentity

(2.2) - 2~= — eilkdw

where Cl/k is completelyantisymmetricande
1~= 1. A brief review of the pro-

perties of the Euler angles, invariant basis forms, etc. is given in Appendix A.
As discussedin the introduction we only wish to considerthose spacetimes

which have non-trivial, one-dimensionalisometry groupswith closedorbits and
a local productbundle structure.More precisely, we considerspacetimeswith

a time function t whose level surfacesare hypersurfacesdiffeomorphic to
which are foliated (in the mannerof a Hopf fibration) by the orbits of the

one-dimensionalisometry group. Metrics of this type can always be written
(after a changeof coordinatesto eliminatethe <<shift vector>> (

4)g
01) in the form

ds
2= (4)g~dx~dx’~= e2~[—N2dt2+ ~ab ~,a ~b]

(2.3) +t2e27[kC,3+i~a~~1]2

where /1, v, . . . range over (0, 1,2,3) with x0 = t; a,b, . . . range over (1,2)
and i,/,... range over (1,2, 3). The component functions ~ and

are assumed to be analytic on ~3 x R and to satisfy the conditionsthat N> 0
everywhere and 1ab is an everywherepositive definite, symmetric2 x 2 matrix.
These fields are assumedto be choseso that 4)g is invariant relative to the one-

-parameter group generatedby Y = (i.e., so that (4)g~~~ = 0). The integral

curves of Y define, in each t = constanthypersurface,a Hopf fibration of ~3, We

consideronly the regions t> 0 or t <0 and require k to be a non-zero constant.
One arrives at this metric form by consideringfirst the generalanalytic Lorentz

metric with t = constantspacelikesurfacesdiffeomorphic to ~3, imposing the
a

symmetry condition of invariance with respectto ~-~- and then showingthat

the spatial coordinate transformationneededto eliminate the shift vectorsdoes

not disturbthe invariancewith respectto ~-.The factorof t2in Eq. (2.3) could
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of course be absorbedinto the definitions of e
2~,etc., but has beenintroduced

for laterconvenience.
After substituting the explicit expressions(2.1) for { ~‘ } into (2.3) one may

reexpressthe metric (4)gas

~

(2.4) +t2e2~[k(dVi +cosO d~)+L3adx’~]2

where {Xa} = {O, 0) ~ {[0, 7r), [0, 2ir)}. These coordinatesmay be regarded,for
each fixed t = constant,as standardpolar coordinatesover ~2 (the quotientof

~3 by the circle action generatedby ~j). For each fixed t, ‘y and N may be

viewed as analytic functionsover ~2 ~ dXadx1’ may be viewed as ananalytic,
Riemannianmetric and ‘3a dx” may be regardedas an analytic one-form field

over ~2 By assumptionall such fielcis depend analytically on t. Conversely,

any chosenset of analytic fields {‘y, N, g~
11,13a } of this type yields an analytic

metric over~3 x R of the desiredkind. This conclusionfollows from comparing
a

the requirementsof analyticity and — invariance of fields of the form
—a~band defmedover~3 with the requirementsof analyticity for the

correspondingfields ~ dx” dx
1’ andj3~dx”defined over the quotient manifold

52(~S3/S’). A briefdiscussionof this point is givenin Appendix A.

a
The above representationof — — invariant metrics over ~3 x R resemblesalp

that often used in xKaluza-Klein-Jordan>>(KKJ) theoriesof gravitation. In such

KKJ theoriesone usually dealswith trivial ~1 bundlesof five dimensions.Here
the bundle is non-trivial but only four dimensional.In this way of thinking ‘y

plays the role of the Jordanscalarfield, (—N2dt2+g~~dx~7dxl~)(which is a

Lorentz metric over ~2 x R), plays the role of the <<spacetime metric>> and

(k cos 0 ~ + f3~dx”)plays the role of the <<electromagneticvector potential>>.

This last quantity is not aglobally defmedone-form over~2 x R (since cos0 dlp
is not) but it does representa globally defined connectionon the ~1 bundle

(S3XR) —+ (S~xR). As a consequenceits curvature correspondsto a globally

defined two-form over S2 xR, (— k sin 0 dO - d 0+ ~a, b — tb,) dx b dx” +

+ 1~a, dt - dx”). This plays the role of the <<electromagneticfield>> in the KKJ
picture. A more extensivediscussion3f Kaluza-Klein type theoriesover non-

-trivial bundlesbasbeengivenby Miller [7].
Now consider the possibility of analytically extending a metric of the above

type through the <<boundarysurface>> at t = 0. The coordinatesusedaboveare

singularat t = 0 so,following Ref. [3], we introducenewcoordinates{t’,0’, lp’, Vi’}
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with the transformation

(2.5) t’ = t
2, lp’ = — — in t, 0’ = 0, 0’ = 0

k

(so that, in particular,x”’ = x”). it is straightforward to show, by writing out
the metric explicitly in the new coordinates,that (4)g is analytic and Lorentzian
on a neighborhoodN = S3 x (— X, X) of the surfacet’ = 0 in S3 xR provided:

(i) y(t’, x”’), N(t’, x”), I3a(t’~x’~’)dx” and

g
0~(t,x”) dx” dx

t’ areanalyticon N,
(ii) N> 0 and is positivedefmiteeverywhereon N,

N2 — e4~

4t’ is analyticon N.

Thetransformedmetrichastheform

ds2= (4)g,~~,dxvdxv
— e2~

= (N2 — e4~)(dt’)2+ e_2Tg~~dx”dx1”

(2.6) 4t’

+ cos0’d0’)+j1~dx”]2

+e2~dt’[k(dlp’ +cos0’d0’)+j3~dx”].

For such a metric it is easy to show that:
a

(iv) t’ = 0 is anull hypersurfacewith ~— tangentto its null generators,

a
(v) the Killing field ~ is spacelikein the region t’ > 0 but timelike in the

region t’ < 0 — its orbits therebeing closedtimelike curves.

Spacetimessatisfyingthe conditions (i) - (iii) aboveare globally hyperbolicin
the regions t’ > 0 (which were coveredby the original chartsby eithert> 0 or

t < 0), haveCauchyhorizonsdiffeomorphic to ~3 at t’ = 0 andhaveclosedtime-
like curves through every event in their acausalextensions,t’ <0. We shall call

sucn spacetimesextendible spacetimesto sigmty their extendibility through
Cauchyhorizons.For eachsuch spacetimeone can defme asecond,inequivalent

extensionby defining a chart

(2.7) t’ = t2, lp’ = lp + in t 0’ = 0, 0’ = 0

instead of (2.5) and proceedingas above. As is well known for the Taub-NUT

spacetime,both extensionscannot be simultaneouslyaccommodatedwithin a
Hausdorffmanifold.
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B. Constructing Extendible Solutions of Einstein’s Equations

To constructextendible solutions of Einstein’s equationsof the geometrical

type describedabove we shall follow the proceduredevelopedin Ref. [3] for

constructingsuch solutionsover T
3xR. The global differencesin the two pro-

blemsare reflectedin the fact that here‘y,fl
0dx” andg~~dx”dx

1’are analytic

fields defined over ~2 x R (~(s3/s’) x R) whereasthere they were analytic
fields defmed over T2xR(~(T3/S’) xR). The Einsteinequationsfor a metric

of the form (2.3) werewritten out explicitly (in a slightly different notation)in
Eqs.(2.4) -(2.6) of Ref. [3]. One needonly replacethej3

0dx”in thoseequations

by ~ dx” = dx” + k cosU dlp which plays the correspondingrole here.The

fact that k cos 0 d4 is not a globally smoothone-formover ~2 x R is irrelevant

since only the quantitites ~at =

13a,r and d(~~dx”)= d(I3adx”)— k sin 0 dO - dØ,

which aresmoothfields over~2 x R,appearin theequations.
To construct analytic extendiblesolutions we shall apply a variant of the

Cauchy-Kowalewskitheorem. As in Ref. [3], it will be convenientto construct

solutions (y, f3~,ga,,N)(t, x”) from analytic boundary data at t = 0 which are

analytic on some neighborhoodof t = 0 in the original chart. It will follow
from the Einstein equationsthat such solutions are even functions of t and

thus also analytic functions of{t’,xa} on some neighborhoodoft’ = 0. From
the analyticity of Einstein’s equationsit will follow that the analyticallyconti-

nued fields satisfy the Einstein equationsin the acausalregion t’ <0 which

was not coveredby the original chart. This procedureof constructingextendi-

blesolutionsby analyticcontinuationfrom solutionsin theoriginal{t, x”} coordi-
natesis convenientbecauseof the particularversionof the Cauchy-Kowalewski

theoremwhich we employ. A direct constructionof solutionsin thenew coordi-

nates{ t’, x”’} would require a different version of the existencetheorem.This
complicationis traceableto the fact that the Einsteinevolutionequations,restric-

ted by the symmetry condition of ~-~- — invariance,changetype from hyper-

bolic to elliptic acrossthesurfacet’ = 0.
To constructsolutions from datagivenat t = 0 we shall impose a coordinate

condition to fix the <<lapsefunction>>N. We chooseN to satisfy

e2~
(2.8) N=V’

where -~ = y(0,x”), (2)1 = ~2~g(0,x”) and ~2~g(t,x”) is the determinant of

g~~(t,xc). This ensuresthe regularity condition (iii) above and also implies(~)= 0 which simplifies the form of Einstein’sequations.That no loss of
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generalityresultsfrom this restrictionof the form of metric (otherthan a specia-
lization of the coordinatesystem) was proven, for T

3xR by theorem(4) of

Ref. [2]. A completelyanalogousargumentcan be given for the 53 x R problem
IT

consideredhere.To facilitate the study of the regionsnear0 = 0 and 0 =

however,oneshouldfirst makea coordinatetransformationof the form

(2.9) lp=lp’±~’, 5~”=x”,

These transformationsremove the singularities in the <<vector potential>> at
0 = 0 (with the choice lp = 0’ + 0) and at 0 = 7r/2 (with lp = lp’ — 0) andallow

the argumentof Ref. [2] to be carriedout as before.
The coordinate condition (2.8) eliminates certain singular terms from the

Einsteinequations(which arosebecauseof thesingularityof the{t, x’} coordina-
tes near t = 0) hut doesnot eliminate all of the singular terms. However, the

variant of the Cauchy-Kowalewskitheorem which we shall use allows the

constructionof solutions even in the presenceof the remaining singularities.
The proof was sketchedin Ref. [3]. For completenesswe includeherein Appen-
dix B a full statementof theproof.

The extendedCauchy-Kowalewskitheorem(a specialcaseof which,for single

second order equations,was proven by Fusaro [8]) may be statedas follows.
Considerthe first ordersystem

au’ k-u N n au.
(2.10) — + = ~ ~A~.(u,t,x”) ~ +B

1(u,t,x’~’)
at t jia=1 ax”

(no sum on i) where the k1 are constants(with, however,k, ~ —1, — 2, . .

etc.) and whereA~,( ) andB~( ) are analytic functionsof (u1, t, x” — i”) on
someneighborhoodof the origin. Thenwehave:

THEOREM (1). Equation (2.10) with the initial condition u.(0,x”) = 0 has a

uniqueanalyticsolution on a neighborhoodof(t, x”) = (0, .~“).

Proof SeeAppendixB.

One can cast the Einsteinevolution equations(Eqs. (2.4) of Ref. [3]) into
a form suitedto the applicationof Theorem(1) by following thesameprocedure
employedin Ref. [3].

To do this we let -~ = 7(0,x”), ~ = j3~(0,xi’) and = g~~(O,xc) be specified
as arbitrary analytic fields over 52 (with ~ an one-form and

1ab a Riemanman

metric), fix N accordingto Eq. (2.8) anddefmenew variables
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(2.11) ~=7—-~, ~a’

with similar expressionsdefmedfor f3~ and ~ In terms of the new variables

the evolutionequationsmay be expressedin the form of Eq. (2.10) andTheorem
(1) may be applied to prove the existenceof a unique,local, analytic solution

with the initial conditions~ = = V =. . . = 0 at t = 0.
We thus get a unique, local analytic solution of the evolution equations on

neighborhoodof (t, x”) = (0, i”) for any point ~“ of ~ Sinceeachsuch local
solution has a non-zeroradius of convergengeand since ~2 is compactwe can

restrict the set of all such local solutions (for fixed ‘i’, etc.) to a fmiLe subset
which overlap to cover a neighborhoodof t = 0. The overlappingsolutions

always coincide on their regions of overlap becauseof the uniquenessresult
in Theorem(1).

To prove that the solutions so constructedare even in t (and thus analytic

in t’ on a neighborhoodof t’ = 0) one shows by successivedifferentiationsof

the equationsof motion that all the odd time derivativesof (‘y, f3~, g~~)vanish
at t = 0.

To complete the proof of existenceof analytic,extendiblevacuumsolutions
with arbitrary initial data (-‘, (3d, g~~)we need only show that the constraint

equationsare also satisfiedon a neighborhoodoft’ = 0. However,the constraint
functions H and H. (see Eq. (2.6) and the defmitionspreceedingEq. (2.14) of
Ref. [3]) vanishidentically at t = 0 for anysolutionof thetype describedabove.

It then follows from anotherapplicationof Theorem(1) (to Eq. (2.14) of Ref.
[3]) that H and H1 vanish on a neighborhoodof t = 0 (the argumentgiven in

Ref. [3] wasslightly more complicatedthannecessary).Finally, it follows from
the analyticity of Einstein’sequationsin the extendiblecoordinates{t’, x”} and

from the analyticity of the constructedsolutionsthat Einstein’sfull vacuumfield
equationsare satisfied on a neighborhoodof t’ = 0 for arbitrary initial data

~‘

1ab } defmedover

We havethusproventhe existencetheorem:

THEOREM (2). Any analytic data (‘y, j3~,g~~)(O,xc) specified over S2 (with j3~a

one-formand g,~,a Riemannianmetric)determinesa unique,analytic, extendible

solution of the vacuumEinstein equationson someneighborhoodof the (com-

pact, null) initial data hypersurface.In coordinates{ t’, lp’, x”} adaptedto the

extension, the solution coversa neighborhood of a smooth Cauchy horizon

(diffeomorphicto S3)at t’ = 0 and has ~-~j~--as a globally definedKilling vector

field. This Killing field is spacelikein the globally hyperbolic region t’ > 0, null
on the horizon and timelike in theacausalextensiont’ <0; its orbits determine
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a Hopffibration of eacht’ = constanthypersurface.

It is worth noting the Cauchyhorizonsdeterminedby the aboveconstruction

are always .tcrushing smgularities>> in the senseof Eardley and Smarr [9]. In
other words, the trace of the second fundamentalform, tr(K1), induced on
the t = constantsurfacesblows up uniformly as t -+ 0~.To seethis one need

only write out theexplicit expressionfor tr(K~),

e
T 1 1

(2.12) tr(K~)= — — ——y ~. + — gabg~
Nt ‘ 2

Since‘y, g~,andN are analyticon a neighborhoodof t = 0, it is easyto see
from Eq. (2.12) that there exist constantsto> 0, t

1> 0, ic0>0, ~1>0 with

t1 <t0 and ic1 > ~ suchthat

(2.13) (—tr(K~))<,c0, (—tr(K1))> ,~

It follows from some recent work of Gerhardt [10] that thereexistsa smooth
spacelikeconstantmeancurvaturehypersurface~ lying betweenthe hypersur-

faces and and having sc~< (— tr(Kz)) <icy. Sincethespacetimebounded
by ~ and the <<crushingsingularity>> at t’ = 0 is globallyhyperbolic,non-singular
and <<crushing>> it also follows from Gerhardt’swork that this spacetimeis folia-

ted by smooth, spacelike,constant-mean-curvaturehypersurfaceswhose mean
curvaturevaries monotonically from — = tr(K~)to — oo. An earlier result of
this type, for the special caseof Gowdy spacetimeson T

3xR, was obtained

by Isenbergand Moncrief [11]. In that case one could prove the existenceof
global foliations for the maximal Cauchydevelopmentssincethosedevelopments

had alreadybeencharacterizedby a global existenceargumentof Moncrief [12].
It is straightforwardto show that the two parameterfamily of Taub-NUT

solutions emergeas special casesof our generalconstruction.Thesesolutions

arise from the initial conditions = 0, ‘j’ = constant,and ~ dx” dxb = dO2 +

+ sin2edO2.
The adjustableconstantsk (see Eq. (2.3)) and -~ providethe two Taub-NUT

parameters.Our coordinates(t’, lp’) are not identical to thoseordinarily defined
in studyingthe Taub-NUT solutions.They are, however,analytically relatedto

thosecoordinateson a neighborhoodof the horizonat t’ = 0.

3. THE SPACEOF (GENERALIZED) TAUB -NUT SPACETIMES

Many of the spacetimesgeneratedaccording to theorem (2) are of course

merely diffeomorphic copies of one another. To characterizethe space of
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inequivalentgeneralizedTaub-NUT spacetimesit is convenientto transformthe
metricsto a canonicalgauge.For this purposewe consider,for eachsuchspace-

time, the group of analytic diffeomorphismswhich (i) preservethe horizon at
a

= 0, and (ii) commute with the isometry generatedby ~ . Infinitesimal

generatorsof such diffeomorphismsare vectorfields ~4~Xwhich are (i’) tangent
to the null hypersurfaceat t’ = 0 and (ii’) satisfy the invariance condition[~,~(4)X]=O.

In termsof the analyticbasis fields(seeAppendixA)

a i a i a
— = — — + —

at’ 2t at 2kt2 a~
a

(3.1)
a cosU a sinO a

= cos ~ — — sin 0 — + —

ao sinO ao sinO a~
a cosO a cosO a

—

ao sinU ao sinO alp
any suchgeneratormay beexpressedas

(3.2) = t’ Y~+

where Y andX’ are analyticfunctions oft’ and x” (independentof i~i’ = x3).

The infinitesimaldiffeomorphismof ~4)ggeneratedby ~4~Xis of coursegiven by

~ ~g = L (
4)g and induces the following infinitesimaltransformationsof the

metric functions y, ‘
3a’ g~~:

V
= — (1 + t7~)+ L(

2)X7

~= (ç) ~+ (~~)~+(L~~)0

(3.3) +~‘~1~cosO+X~ksinOsinO+X~ksinOcosO

~ab = + (~~)~ab,t +

where
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a
(3.4) = X’(~1)” — = X’L1

ax”

We have introducedthe notationL1 for (s,)” (the vector field ~. with
ax

a
the — term discarded)since theseobjectsmay be identified with the usual

analytic <<angular momentum>> generatorsdefmed over ~2 and, in particular,
satisfy

(3.5) [L1, L1] = ~i/k’Lk.

Thus ~
2~xmay be identified with an analytic vectorfield over~2 x R. Thethree

functions X’ maybe recovered from their <<vector part>> ~2~Xtogetherwith

their <<scalarpart>>X~n,where

(3.6) (n,) = (cos 0, sin U sin0, sin 0 cos 0)

Restrictedto the surfacet’ = 0 the infmitesimal transformations(3.3) reduce

to

~—+ L~
2~y~0’

(3.7) = (~)+ (L~2~)~+ k X’0n1
t0

~ ={ ~ + (L~2~g),~} ~
The group property of such transformationsof the initial data is reflectedin

the commutatorof suchtransformations.If (Y, X’) and (Y*, Xl*) are the gene-
rators of any two such infmitesimal diffeomorphismsthen their commutator
is a transformationof the sametype with agenerator(Y’, X’) given by:

Y’=L Y—L y*
(3.8) ~

2~-v (2)x
X’= L X’ — L + ~(2)x* ~2~x ijk

Theseimply that

(3.9) ~2~x’= [(2)X*,(2)X],

= L(
2) (X

1n
1)— L(2) (Xi*nj) + njej/kX1Xk*.

To bring the initial data (~‘,(3~,
1~b~to a canonicalgaugewe first apply an

element of the abelian subgroupgeneratedby (Y, 0). This subgroupacts on
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~ by conformal transformationand can be used to bring 1ab to a convenient
representativeof its conformal equivalenceclass.For ~2 thereis only one con-

formal equivalenceclass and a convenientrepresentativeof it is the constant
curvaturemetricwith area4ir (i.e., thestandardmetric for S2).

Next we considerthe non-abelian subgroupgeneratedby elementsof the

form (0,X’) which actson 1ab by diffeomorphismsgeneratedby ~ the vector
part of (X’). With this group action we can bring ~ab to the canonicalform

(3.10) ~ dx”dx1’ = dO2 + sin2OdØ2.

Next we considerthe abelian subgroupgeneratedby elementsof the form

(Y, X’) = (0, Cn
1) where C is an arbitrary analytic function and (n1) is given

in Eq. (3.6). Thesegeneratorshave Y = 0 and thusleave ‘j~ and inva-

riant while transforming(3~accordingto

(3.11) ~130=kC0.

With C appropriatelychosen,one canuse thissubgroupto transformthe diver-
genceof t3~to zero.

Finally, without disturbingthe foregoinggaugeconditions,one can apply the

six parametersubgroup (isomorphic to the conformalgroup of 52) generated
by elements(Y, X) with

(3.12)

ii = + sf/k C7-flk~ ~ ~,

where c~and are arbitraryconstants.This correspondsto ~-~xbeing an arbi-
trary conformalKilling field of~ dx” dxi’ = dO

2+ sin2U dO2,

(3.13) (2)X=ffL~+cfeffkn/Lk

with Y chosento yield &~ab= 0 and X’n
1 chosento yield ~ (‘

2~V~j3”)= 0. The

commutatorof any two suchtransformations,generatedby ~ c,) and (~f7,c7),
is a transformationof thesametype with agenerator(~,c~)givenby

(3.14) £~=elIkC~/A~k—cfck)
= effk(Crk—~/~).

This commutationrelation coincideswith the Lie algebraof the conformalgroup

of S2which is turn coincideswith the Lie algebraof the Lorentz group.
Let Conf (S2) designatethis action of the conformal groupof ~2 on the data

{‘~‘ 1~a} where is fixed and given by (3.10),where~ hasvanishingdivergence
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with respectto but is otherwisearbitraryandwhere~ is arbitrary.it is natural

to identify the inequivalent generalizedTaub-NUT spacetimeswith the orbits
of this groupaction.We, therefore,define the spaceS of generalizedTaub-NUT
spacetimesby (1)

~(‘, i3~,) I(2~~~~a = 0}
(3.15) S =

Conf (52)

Roughly speaking, this space is parameterizedby two arbitrary functions on
a

S
2 and has half the dimensionof the full spaceof ~ -symmetricvacuum

spacetimeson S3 xR. Presumablytile other symmetric,analytic solutions(i.e.,
thosenot representedin S) develop curvaturesingularitiesrather thanCauchy
horizons at the boundariesof their maximal globally hyperbolic extensions.

In the foregoing we have considereddiffeomorphismswhich preservethe
a

explicit symmetry invariancewith respectto ~-~-j- and the initial datasurface

(the horizon at t’ = 0) but we have not attemptedto preservethe coordinate
conditionssuchas the zeroshift conditionwhich weimposedinitially to simplify

the metric form. Such a restriction was not necessaryfor the classificationof
inequivalent initial data sets discussedabove. It will be useful to imposethis
restriction, however,for the discussionof possibleadditionalKilling symmetries

to be given below. it is not difficult to show that an infinitesimal generating
vectorfield ~4~Xmustbe constrainedto satisfythepropagationequations

2N a [v~5j /(2)x” — (2)ja
Y= —I~ ~ axaL N “ t

(3.16) ~2~r
1=N

2t/2g”~’ ~‘,b

k(n
11

1)~=— (-~)—~2~x”~

in order to preservethe zeroshift condition(c.f., the metric form in Eq. (2.3))
and the condition (2.8) upon the lapsefunction N. The existencetheory for

solutionsof theseequationsis identical to that discussedfor the corresponding
equations(3.4) of Ref. [3] and so neednotbe repeatedhere.This theory(which

(1) We havehere suppressedthe non-zeroconstantk which was introducedin the metric
form (2.3). This constant provides one additional parameterin the spaceof generalized
Taub-NUTspacetimes.
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follows immediately from theorem(1) above) establishesthe existenceof a

unique analytic vector field ~4~Xsatisfying Eqs. (3.16) for arbitrary,analytic
initial data (Y, X’) ~ We shall show below that if the initial data(~,~
is left invariantby this initial datafor ~4~Xthen the ~4~Xconstructedby the above

procedurewill be a Killing field of (4)g. Furthermore,all analyticKilling fields
of (4)garisein this way.

We first show that any analytic Killing field of (4)g must (i) be tangentto

the surface t’ = 0 and (ii) commute with ~ . To establish (i) we consider

the metric (4)g in the primed coordinatesystem(2.6) and constructthe Killing

form Kb,. ,~.= (L (4)X (4)g)~. ,, for anarbitraryvectorfield ~ SettingK
3.3 = =

= 0 leadsto the equation

(3.17) (kXt+Xt3,)It,o= 0.

Integratingthis anddemandingsmoothnessalongthe(closed)orbits of ~ leads

to Xt’j~0= 0 which proves(i). In a similar way we get from K3~11,~ 0

that X~.1,0 = 0 and from K3~3~t~r ~= 0 and K~.3’1,0= 0 equations

that imply X~. = 0 and thus[—i, , ~x1 = 0. However,if ~X and

a a ‘ t =0 Lax ] ~‘=~ r a 1
—, = — are both analytic Killing fields, then so is ~Z = —p , ~xI.
ax

3 a~ ~alp j
However,~Z vanisheson the three-dimensionalsurfacet’ = 0 and thusevery-

where. This follows from noting that, usingKilling’s equationsin the analytic
case,all the successiveti = derivativesof ~4~Zcan be expressedat t’ = 0 in terms

of the trivial data ~4~Z ~‘=~ = 0. Thisproves(ii) and thusshowsthat any analytic
Killing field of (4)g mustbe expressiblein the form (3.2) discussedabove.

Any such vector field induces an infinitesimal gaugetransformationof the

metric functions~, j3~,g~,givenby Eq. (3.3). Restrictedto the initial datasurface
= 0 this transformationreducesto that given in Eq. (3.7). Therefore,aneces-

sary condition on the vectorfield ~4~Xfor it to be a Killing field is that it leave
the initial data (~,f3~,,1db) invariant, i.e., that it yield ~7 = = ~ = 0 in
Eq. (3.7). Given <<initial data>> (Y, X’) L =0 with this propertywe construct
a unique analyticvectorfield ~4~Xby solving Eq. (3.16) with theseinitial condi-

tions. Our aim is to show that the Killing form of this vector field, ~4~h=

= (L(
4)~(

4)g),vanishesidentically.
First of all, ~4~h= (L (4)~(4)g)satisfiesthe linearizedEinsteinequationssince,

of course,any infinitesimal gaugetransformationhas this property.Secondly,

(4) h satisfiesthe linearizedversionsof thecoordinateconditionsinitially imposed

on (4)g since thesewere precisely equivalent to requiring that ~4~Xsatisfy Eqs.
(3.16). Therefore (ö

7, ~ ~ satisfy the linearized versions of Eqs. (2.4)
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of Ref. [3]. Theseequations are linear and homogeneousin the perturbation

variables(~-y,~ ~ andhaveonly the trivial solutionfor the caseof vanishing
initial data(as follows from an applicationof Theorem(1) above).It follows that

e2~
= = ~ab = ~ everywhereand thereforealsothat oN= 0 ~ \/~i5)= c

since O-~= = 0 by assumption.Thus (4);~= L(
4)~

4~g= 0 and ~4~Xis a
Killing field of (4)g. We thushave:

THEOREM(3). A necessaryand sufficient condition for (4)g to admitan analytic

Killing field ~4~Xis that initial data (Y, X’) I ~= o this vectorfield existwhich

leave the initial data for (4)g invariant (i.e., which give O~= t43~= ~1ab = 0 in

Eq. (3.7)). Any suchvectorfield is tangentto theinitial surfacet’ = 0, commutes

a
with the Killing field ~ and may be uniquelyconstructedfrom its initial data

by integratingEqs. (3.16).

It’s clear from Eqs. (3.7) that, for ~X to be a Killing field of ~4)g,~2)XI ~=

mustbe a conformalKilling field Of and ~I ~ must equalminus the diver-

genceof ~2~X~ ~. If ~2~xI t= ~is actually a Killing field of ~ then V I ~= ~= 0
and theuniquesolution of Eqs.(3.16)is given by

(3.18) Y=0 ,

In this case~4~Xis time independentin the given coordinatesystem.
The studyof additionalKilling symmetriesis simplified somewhatif wework

in the canonicalgaugedefinedabovein which has the form (3.10) and j3~
has vanishing divergence. In this gauge an independentKilling field (i.e., one

a
independentof ~-~-~) exists if and only if thereexistsa generator(Y, X’) I ~= o
of the form (3.12) which leavesthe initial data(~,13~1~b~invariant. In other
wordsan additionalKilling field existsif andonly if the initial datais left fixed

by a non-trivial subgroupof the conformal group Conf(S2) discussedabove.

In defining the space S of inequivalent (generalized)Taub-NUT spacetimes
(c.f., Eq. (3.15)) we took a quotient by this group action. We now seethat
this group acts freely on the spaceof (canonicallygauged)initial dataexcept
at thosepointswhichhavenon-trivial additionalKilling symmetries.

We can simplify the parameterizationof S if we recall that any divergence-

-free on form on S2 canbe expressedas
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e~~C
(3.19) = kg~~~r

wheree”~’= — ~ba e12= 1 andwhereX is a function on S
2determineduniquely

up to an additive constant.We canremove the arbitrarinessin the choiceof X
by imposingthenormalizationcondition

(3.20)

The action of thegroup Conf(S2) on X canbe readily computedand yields the
infinitesimal transformation

(3.21) OX = L(
2)X — + f.~((2)xa~)

Aside from the final (spatially constant)term (which is neededto preservethe
normalizationcondition (3.20)) this transformationhasthe sameform as that

for -~ (c.f., Eqs.(3.7) and(3.12)).We can, thereforereexpressS as (2)

fr~~)Ifv~~=o~

(3.22) S =

Conf(5
2)

and again characterizethe occurrence- of additionalKilling symmetriesin terms

of fixed pointsof theconformalgroupaction.

APPENDIX A

The three sphere ~3 {(x, y, z, w)Ix2 +y2 + z2+ w2= l} may be para-
metrizedby Eulerangles(0, 0, 0) � ([0, ir), [0, 2ir), [0, 4ir)} via

- O\ 0—0

x—iy=sln —Jexp i
2/ 2

(A.l)
0 111+0

w+iz=cos — exp i
2 2

(2) Where again we have suppressedthe constantk (cf., Eg. (2.3)) which previdesone
additionalparameterin thespaceof solutions.
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This is equivalent to expressingan arbitrary elementU of SU(2) S~in the

forms

(A.2) U = ( W + iz Y + ix ~ = e0,~2)e0,6/2)e~~~
2)

\—y+ix w—iz/

where{ a
1} arethePauli matrices.

The vectorfields { ~} definedby Eq. (3.1)provideananalyticbasisfor vectors
on ~3•Theiranalyticity may mosteasily be seenby rexpressingthemin termsof

{(x, y, z, w)I x
2 + y2 + z2+ w2 = l}, which determinethe usual analytic struc-

ture on S3. The one-forms {2,’} defmedby Eq. (2.1) provide a corresponding

analyticbasis for one-formson 53 and are invariant with respectto the{~~}(i.e.,

L~Ô’= 0). The explicit forms of thesebasisfields andtheir respectivedualbases
ar~given, in both typesof coordinates,by Miller in Ref. [6].

The orbits of ~_. (a vector field in the basis dual to the {~,~})define the

fibers of S3, regardedas a non-trivial ~1 bundle over~ One may think of

(0, 0) � ([0, 7r), [0, 27r)} as parameterizing(as standardspherical coordinates)
the orbit space~2 An analyticprojectionmapir : ~3 ~~S2 is definedwhichsends
any point in ~3 to thepoint labeling theorbit on whichit liesin~

Any analytic function on ~2 may be lifted (i.e., pulled back using ir) to an
a

analyticfunction on ~3 which is invariantunderthe flow generatedby ~- and,

conversely,any analytic, ~— — invariant function on S3 projectsto an analytic

function on S2.

A similar remark holasbr one forms on 52 but one mustkeepin mind that
any smooth one form vanishessomewhereon 52 and thus that a global basis
does not exist. One can cover 52 by using, in appropriateregions,the analytic

(local) bases(di, dP), (di, d2) and (di, d~)wherei2 +5~2+ ~2 = 1. Adopting
the usualparameterizationof S2:

i=sinOcos0

(A.3) .33 = sin 0 sin 0

~=cosO

we get (locally defmed)bases(d (sin 0 cos 0), d (sin 0 sin 0)), etc.,expressedin

sphericalcoordinates.Pulling thesebasis forms backto ~3 we get analytic, 4-
— invariant formsexpressibleas
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d (sin 0 coso)= (w2—z2—x2+y2) ~:,i — 2(wz+yx)~2,

(A.4) ~

d(cosO)=—2(wx +yz)C~ + 2(xz—wy)~2.

It follows that the pull back of any analyticone form j3 on ~2 is expressibleas
a

a — — invariant form /3gw” on S3. The local basesfor such forms on ~2 pull

backto correspondinglocal baseson ~ Conversely,any analytic ~- — invariant

form on S3 which annihilates ~ (i.e., which is expressiblepurely in terms

of the {~“}) projectsto ananalyticform on
Finally, by the same reasoning,any analytic Riemannianmetric on ~2 pulls

back to a symmetric, analytic _~_- — invariant tensor on S3 expressibleas

w” ~,b Converselyany analytic, symmetric 4 — invariant two-tensoron

~3 which annihilates 4 and is positive definite on subspacecomplementary

to ~-~- projectsto an analyticRiemannianmetricon

APPENDIX B

We proveherethe extendedCauchy-Kowalewskitheoremdiscussedin Section

II. A special case (for single second-orderequations)was provenby ‘Fusaro in
Ref. [8]. Considera systemof partial differential equationsexpressiblein the

form

au. k-u. N n au.
(B.l) —~ + —~—~ =~ ~A7.(u,x,t) —~- +B

1(u,x,t)
at t ~ ax”

(no sumon i) whereA~( ) andB1( ) are(real)analyticfunctionsof(u, x, t) =

= {u,, x”, t} on a neighborhoodof the origin andwherethek, are(real) constants
(with, however,k. ~ — 1, — 2 etc.). We wish to solve this equationsubject

to the initial conditionu1(x,0) = 0. We shall do this by constructingthe formal
seriesexpressionfor the solution and by proving its convergenceby coniparison
with the companion,non-singularproblem
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au. N n au.
(B.2) —~- =K ~ ~A~,(u,x,t) —f +B,(u,x,t)at ~

u~(x,0) = 0

whereK is a suitablychosenpositiveconstant.

Using themulti-index notationof Schwartz[13] we write

~ . . . uf x(x’)~. .

(B.3) =~A~~}uaxat1~,

B.(u,x, t) =

andseeka solution of the form

(B.4) u
1 =~ ~ u~’}x’~t’

{~}
(where we set ~1{~,0} = 0 to implementthe initial condition u7(x, 0) = 0). Sub-
stitutingtheseexpressionsinto Eq. (B.1), we get therecursionrelations

(B.S) (X + k1)u1{~’}=Q7~-}(u1{7~},A7,~”~”})+R{~’}(u/~}, B1&~’°})

where Q ~{~} and R are polynomials in their argumentswith non-negative
coefficientsand which are linear and homogeneousin the A7j~P0}and B1{~”}

respectively.Furthermore,Q1(’~}and involve only thoseu1P~}with 0 <X.
Thus onecanalsowrite (for A = 1, 2,...)

= Q1{~’}~ 1 A7k{~.’7})
/ X+k1

(B.6)

+R.{~} (u.{uo}, B.{’~°}

I / X-~-k1

and derive, by successivesubstitutionsto eliminate the ~1{~},the expressions

= ~{~} 1 A~,j~Pa}, B.{”~”} ,
7+/C1 / y+/c1 /

(B.7)

where ~}are polynomialsin the arguments k A7k~°}and k B)”~}

with non-negativecoefficients. (Note that since some of the 1 may be
7+k1
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negative,one cannotin general absorbthesefactors into the polynomial coef-
ficients withoutdisturbingtheir non-negativity).

Now le~~ A7~””’},~B
1{°~~})denote the polynomials obtainedfrom

thosein Eq. (B.7) by settingk. = 0 and replacing Aj”P”} andBJ{CIPU} by KAJ~~”}
and KBJ{”~°}respectively,where K is a positive constant(to be chosenbelow).

K
Sincethe factors — are strictly positive, one may absorbthem into the coef-

7
ficients anddefine

(B.8) k{1Ix} (AJ~JaPa,BI{~Pa})= p{iIx} (f A~””’}, — B,~~Pa})

where the are polynomials in the indicatedargumentswith non-negative

coefficients. Clearly the formal solution to the non-singularproblem (B.2) is
given by

(B.9) u~{h3~’}=F1{’~}(A~j”°°},B1{”°})

while theformal solutionto thesingularproblem(B.!) is givenby (B.7).

We now chooseK suchthat

7 7
(B.l0) K~ max I I~... I

TEZ 7+ki 7+kN

where Z~= { 1, 2 }This is always possiblesince the k1 are excluded from
being negativeintegers.Thischoiceensuresthat

1 1

p.{ak} I A~~~Pa}I,I B.{aP0}I
I y+lc, / 7+k1 ~‘

(B.ll) ~P1{~} (I K7 A~”~}I,I

= j{~3x} (IA7~°”°}I, IB1{°~’°}I)

It follows that if {A’,B’} is a set of argumentswhich majorizes{A,B} in the
sensethat

I A~”~}I~A~{””°}
(B.12) IBi{”~}I~B;{”~”}

then we have (writing (A/k,B1) for (A~~j”~},BJ””’}) to simplify the notation)
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B.
I 7+k~ / 7+/Cs ‘

~ 1 1

A.kI,I B.I1 \7+k1 / 7+k1 /

(B.13)

~ (A;k,B;).

Thus a majorant for the non-singularproblemis also a majorantfor the singular

one.
Since the standard Cauchy-Kowalewskitheorem [141 provides a maiorant

for the non-singularproblem,we thus get a majorant for the singularproblem
and thus a proof that the formal seriessolution to the singular problem
convergesabsolutely.This proves

Theorem(1): Equation (B.l) with the initial conditionu1(x,0) = 0 hasa unique

analyticsolutionon a neighborhoodof theorigin.
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